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Abstract. The existence and uniqueness of generating partitions in non-hyperbolic dynamical
systems is usually studied in a simple, exemplary system, namely the Hénon map at standard
parameter valuesa = 1.4 andb = 0.3. We compare its standard partition with three other binary
partitions, which are quite different from the standard partition but also appear to be generating.
One of these partitions passes twice through the same orbit of homoclinic tangencies, providing a
counterexample to a recent conjecture by Jaeger and Kantz (J. Phys. A: Math. Gen.30 L567).
Introducing some simple rules to manipulate symbolic sequences, we show how to translate
symbolic sequences produced by one partition into sequences produced by the other partitions.
This proves that all these partitions are as good approximations to generating partitions as the
standard partition. We also construct an infinite number of binary partitions, which are all quite
similar to the standard partition, derive their translation rules, and prove the same equivalence. It
is not known for sure whether any of these partitions is indeed generating. But if one of them is
generating, then they all are.

1. Introduction

Symbolic dynamics is a powerful tool to study chaotic dynamical systems (see e.g. [9, 11]
for introductions). It is based on a partition of phase space into regions denoted by different
symbols. For most purposes, the partition has to be ‘generating’, that is it must not assign
the same symbolic sequence to different orbits. Unfortunately, one does not know how to
construct these generating partitions in any but the most simple dynamical systems, namely
one-dimensional maps and higher-dimensional systems that are uniformly hyperbolic. Even
for the next simplest case, for two-dimensional dissipative maps, no systematic way is known
to construct generating partitions.

The best construction rule we have is the one proposed in [7]: put the partition line
through ‘homoclinic tangencies’, that is attractor points whose stable and unstable manifolds
are parallel. This rule alone is, however, not sufficient to fix the partition line. Any homoclinic
tangency has other homoclinic tangencies as images and preimages and thus defines a whole
orbit of homoclinic tangencies, which can lie all over the attractor. Although the partition line
should intersect each orbit of homoclinic tangencies at least once, one is still free to choose
where the orbit is intersected. Most choices will not produce generating partitions. By choosing
those homoclinic tangencies whose stable and unstable manifolds are only weakly curved one
has successfully constructed partitions for two-dimensional dissipative maps [4, 7, 8], a three-
dimensional dissipative flow [6], and a two-dimensional conservative map [1, 2]. The curvature
of stable and unstable manifolds is, however, not invariant under coordinate transformations.
Any construction scheme based on this curvature is therefore quite unsystematic.
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Figure 1. Hénon attractor at standard parameter valuesa = 1.4 andb = 0.3. The attractor is
marked by dots. The thin solid line shows some segments of its stable manifold. The thick solid
line denotes the approximate position of the standard partition line defined in [7]. It partitions the
phase space into the two symbolic regions 0and 1and passes through homoclinic tangencies, that
is points whose stable and unstable manifold are parallel. It was drawn here by connecting visually
identified homoclinic tangencies. It crosses the attractor at the four placesA0, B0, C0, andD0.
Each of these crossings consists of an infinite number of homoclinic tangencies, which are too
close to each other to be resolved.

Several studies have searched for more systematic construction rules [5, 8, 12]. Just like
the original study [7], they focused on finding generating partitions for the two-dimensional,
non-hyperbolic H́enon attractor [10], in the hope that knowing how to construct these partitions
might help in constructing generating partitions for more complex dynamical systems. The
most studied partition is the 01-partition at standard parameter valuesa = 1.4 andb = 0.3,
which is shown in figure 1. Although there is no proof that the 01-partition is indeed generating,
numerical tests have shown it to be at least a very good approximation to a generating partition
[4, 7, 8, 12].

Is the 01-partition the only binary generating partition? For non-standard parameter values
a = 1 andb = 0.54, two binary partitions were found a few years ago, which both seem to be
generating [8]. Recently, we showed that even at standard parameter values, the 01-partition
is not unique in being the only binary generating partition. There are other binary partitions,
which are generating, if the 01-partition is generating. The same holds true for a wide range
of parametersa andb, namely for all parameters where some short symbolic sequences are
forbidden. We published these partitions in a technical report [5] and will summarize some of
their properties here. Independently, Jaeger and Kantz discovered similar partitions [12]. All
these partitions are shown in figure 2. Jaeger and Kantz also conjectured a necessary condition
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Figure 2. Four partitions of the H́enon attractor at standard parameter values. The 01-partition was
the first to be discovered [7]. TheCD-partition was found in [5, p 106], where its image was called
theXY -partition, and independently in [12], where it was called partition VIII. TheGH -partition
was found in [12], where it was called partition IX. TheAB-partition was found in [5, p 47]. These
four partitions are related: if one of them is generating, then they all are.

for a partition to be generating: its partition line should intersect each orbit of homoclinic
tangencies once, and only once [12, condition 1]. We will show here a counterexample to this
conjecture: theAB-partition in figure 2 intersects some orbits of homoclinic tangencies twice.

In previous studies, like [4, 7, 8, 12], numerical tests were used to decide whether a partition
is generating. Entropies were calculated and it was checked whether all periodic orbits of short
length are classified correctly. Here we will proceed in a different, algebraic way, similar to
the one used in [8] to compare two partitions of the Hénon attractor at non-standard parameter
values. We will derive translation rules between the four partitions in figure 2. With these rules,
one can translate any symbolic sequence from one partition into the corresponding symbolic
sequences from the other partitions, without having to reconstruct the underlying orbit in phase
space. In contrast to the two partitions at non-standard parameter values, for which no complete
set of translation rules could be found in [8], the partitions presented here can be described
with only a small number of translation rules. Using a suitable notation, these translation rules
can be expressed concisely and applied easily.

We also will show that two different sequences never translate into the same sequence and
conclude that the four partitions in figure 2 are ‘equally good approximations to a generating
partition’. That is, if one of them assigns different symbolic sequences to different orbits, then
they all do. And if one of them is generating, then they all are. The same methods can be used
to construct an infinite number of binary, generating partitions from the standard 01-partition,
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which are, however, almost indistinguishable from the 01-partition itself.
Section 2 reviews some basic definitions. Section 3 explains a simple way to calculate

with symbolic sequences, which we will need for our translation rules. Section 4 describes
the four partitions. Section 5 contains the translation rules and the proof that all four partitions
are equally good approximations to a generating partition. Section 6 shows how to construct
an infinite number of generating partitions from the 01-partition. Finally, section 7 discusses
what these partitions teach us about the location of partition lines and the existence of symbol
planes and which of the partitions are the simplest.

2. Basics

The H́enon map(xn+1, yn+1) = f (xn, yn) is given by

xn+1 = a − x2
n + b · yn yn+1 = xn (1)

with standard parameter valuesa = 1.4 andb = 0.3. Its attractor is shown by the dots in
figure 1. Attractor points whose stable manifold lies parallel to their unstable manifold are
called homoclinic tangencies. By construction [7], the 01-partition line intersects the attractor
in some particular homoclinic tangencies, where neither the stable nor unstable manifold is
too strongly curved. Attractor points on one side of the partition line are assigned the symbol
S0 = 0, points on the other side the symbolS0 = 1. Points on the partition line can be included
at will in either of the two symbolic regions.

Because of the fractal structure of the attractor, the shape of the 01-partition line may get
quite complicated on a microscopic scale. As we will not try to prove that the 01-partition is
generating, we will not have to discuss its exact position. Our arguments will hold for any
partition line that is close to the one shown in figure 1.

As the H́enon map is invertible, each attractor point(x0, y0) defines an infinite orbit

. . . (x−2, y−2), (x−1, y−1), (x0, y0), (x1, y1), (x2, y2) . . . (2)

of attractor points and thus an infinite sequence of symbols

. . . S−2S−1S0S1S2 . . . (3)

whereSn is the symbol of the region that contains(xn, yn). In such a sequence, we use the
underscore ‘’ to mark the position of the present symbolS0.

3. Manipulation of symbolic sequences

We will also work with symbolic sequences that are finite. By definition, such a sequence
denotes the set of all attractor points whose infinite symbolic sequence contains this finite
sequence at the correct place. Thus 0denotes all the attractor points in the 0-region, 10
denotes all the attractor points in the 1-region, whose image lies in the 0-region, and so on.
We will use the symbolE (for ‘everything’) to fill in empty places in the middle of a symbolic
sequence, if the corresponding symbolic region is not known. For example, 0EE1 denotes the
set of all attractor points whose pre-image lies in the 0-region and whose second image lies in
the 1-region. Applying the H́enon mapf , we getf (0EE1) = 0EE1, the set of all attractor
points whose second pre-image lies in the 0-region and whose image lies in the 1-region. In
general, applying the mapf to any symbolic sequence simply shifts the underscore ‘’ one
place to the right.
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As each finite symbolic sequence denotes a set of points, the usual operations of set algebra
can be applied to them. For example:

0∪ 1= E = set of all attractor points (4)

0∩ 1= ∅ = empty set (5)

S ∪ E = E for any symbolS (6)

S ∩ E = S for any symbolS (7)

0E ∩ EE1 = 0EE1. (8)

We will also use symbols other than 0, 1, orE in such expressions. Any symbolS can be used,
if its symbolic regionS is known.

4. Generating partitions of the Hénon attractor

A partition is called generating if it distinguishes all orbits, that is if it never assigns the same
infinite symbolic sequence to two different orbits. Figure 2 shows some partitions which
may be generating. They are all different from one another (and from each other’s images
and preimages) and therefore define four different symbolic dynamical systems. We will call
them: 01-partition,CD-partition,GH -partition, andAB-partition.

The 01-partition can be used to define the other three partitions in figure 2. Their partition
lines intersect the attractor in points that are images or preimages of the points through which
the 01-partition line passes. Following the notation in [12], we divide the 01-partition line into
four segments, denoted byA0, B0, C0, andD0 (see figure 1). The images ofA0 are calledA1,
A2, . . . , the preimages are calledA−1, A−2, . . . . By definition, theCD-partition line passes
first throughA−2, thenC0,D0, and finallyB−3. TheGH -partition line passes throughA0,B0,
C0, andD−2. And theAB-partition line passes throughB−2,C0,D0,B−1, andA−1. Note that
theAB-partition line passes through bothB−2 andB−1, so that it intersects twice any orbit
going throughB0.

5. Translation rules

To translate symbolic sequences from different partitions into one another, we first have to
specify the contents of each symbolic regionA, B, . . . . This can be done geometrically,
by dividing the phase space into small regions corresponding to finite 01-sequences and by
reassembling those regions to form the symbolic regions from figure 2. The result is

A = E0 ∪ 011 (9)

B = 11 ∪ 010 (10)

C = 0 ∪ 1E0 ∪ 1011 (11)

D = 111 ∪ 1010 (12)

G = 000 ∪ 10 ∪ 100 (13)

H = 100 ∪ 11 ∪ 101. (14)

Instead of defining the partitions via their partition lines, we can regard equations (9)–(14) as
the definitions of theAB-,CD-, andGH -partition in terms of the 01-partition. This approach
is more general than the geometric definition of the partition line: it can be applied to any map,
for which a binary 01-partition has been defined. Using the standard rules of set algebra, one
can easily check that equations (9)–(14) define true partitions, that is the two symbolic regions
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are disjoint and their union covers the whole attractor. For example:

A ∩ B = (E0∪ 011) ∩ (11∪ 010) (15)

= (E0∩ 11) ∪ (E0∩ 010) ∪ (011∩ 11) ∪ (011∩ 010) (16)

= ∅ (17)

A ∪ B = E0 ∪ 011 ∪ 010 ∪ 11 (18)

= E0 ∪ 01 ∪ 11 = E0 ∪ E1 (19)

= E (20)

(and likewiseC ∩D = G ∩H = ∅ andC ∪D = G ∪H = E).
The rules (9) and (10) suffice to translate any infinite 01-sequence into a unique infinite

AB-sequences. Given the 01-sequence, they determine whether the present symbolic region
of the point isA orB. By applying the mapf one can shift these rules in time and determine
the symbolsA orB at all times, that is the whole infiniteAB-sequence.

Thus any two orbits with the same 01-sequence have the sameAB-sequence and any
two orbits with differentAB-sequences have different 01-sequences. We can express this by
saying that the 01-partition is ‘at least as good an approximation to a generating partition’ as
theAB-partition.

We want to show that the 01-partition andAB-partition are equally good approximations to
a generating partition (by which we mean: two orbits are assigned different symbolic sequences
by one partition if and only if they are assigned different symbolic sequences by the other
partition). It remains to be shown that theAB-partition is at least as good an approximation to
a generating partition as the 01-partition. For this, all we need are rules that translate infinite
AB-sequences back into 01-sequences. It is not immediately obvious whether such rules can
be found. Their existence depends on the grammatical rules of the 01-symbolic dynamics, that
is on which 01-sequences are forbidden. For example, both the sequence. . .000100. . .and the
sequence. . .001100. . . translate into the sequence. . . AABAAA . . . . If both 01-sequences
were allowed, then there would be no unique way to translate theAB-sequence back into a
01-sequence.

For the H́enon attractor at standard parameter values, the first few grammatical rules of
the 01-symbolic dynamics are well known [8]. The shortest forbidden sequences are 0000,
0010, and 0110. These are all the grammatical rules one needs to translateAB-, CD-, and
GH -sequences back into 01-sequences.

As an example, let us derive the translation rules ofAB-sequences into 01-sequences.
Using the definitions (9) and (10), we get

AA = (0∪ 011) ∩ (E0∪ 011) = 00 ∪ 011 (21)

AAB = (00∪ 011) ∩ (E11∪ E010) = 0010 ∪ 011. (22)

But 0010= ∅, so that we can already translate 011 intoAAB. As the setsE0 and 011 are
disjoint, we get from equation (9):

E0= A \ 011= A \ AAB = BAB ∪ AA (23)

0= BAB ∪ AA (24)

1= E \ 0= AAB ∪ BE. (25)

(As usual,M \N denotes the set of all points that are inM but not inN .) The last two equations
(24) and (25) are the desired translation rules. With them, any infiniteAB-sequence can be
translated into a unique 01-sequence. To conclude, if 0010 is a forbidden sequence, then the
01-partition and theAB-partition are equally good approximations to a generating partition.
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Because of the other forbidden 01-sequences, these back-translation rules can be expressed
in slightly other forms. If 0110 is forbidden, we can derive the equation 011= AABB and
use it to get the alternative rules:

0 = BAB ∪ AA ∪ AABA (26)

1 = AABB ∪ BE (27)

which hold even if 0010 is not forbidden. At standard parameter values, where both 0010
and 0110 are forbidden, either pair of rules can be used to translateAB-sequences back into
01-sequences.

In an analogous way, rules can be found to translate infiniteCD-sequences andGH -
sequences back into 01-sequences. A simple derivation uses the equationsCCD = 011,
DCDD = ∅, andD ∪ CCD ∪ CCD = EE1. Let us just state the results.CD-sequences
can be translated by

0 = DCDC ∪ CCC (28)

1 = D ∪ DEC ∪ CCDC (29)

if the sequences 0010 and 0110 are forbidden.GH -sequences can be translated by

0 = GH ∪ GGG ∪ GGH (30)

1 = HH ∪ HGH ∪ GGH (31)

if the sequence 0000 is forbidden. (A simple derivation usesGGH = 100 andG =
(0 \ 100) ∪ 100.)

For the H́enon attractor at standard parameter values, the sequences 0000, 0010 and 0110
are all forbidden, and we can conclude that the 01-,AB-, CD- andGH -partition are equally
good approximations to a generating partition. If one of them assigns different symbolic
sequences to two different orbits, then they all do. And if one of them is a generating partition,
then they all are.

6. An infinite number of generating partitions

The three partitions in figure 2 are not the only generating partitions that can be constructed
from the 01-partition, if it is generating. They are special in that they differ quite strongly from
the 01-partition, yet appear geometrically simple. We will now show how to construct other
binary generating partitions, which are quite similar to the 01-partition, by taking a small part
from the 1-region and adding it to the 0-region.

To construct such a partition, one first has to choose a finite sequence, which we will call
the ‘difference’-sequence. It should be allowed, but should be turned, by changing only the
underlined symbol, into a forbidden sequence. As an example, we choose the difference-
sequence 001110111, which is allowed (see figure 3), while the sequence 000110111 is
forbidden (because it contains the forbidden sequence 0110).

Next, one takes the small region 001110111 from the 1-region and adds it to the 0-region.
We will describe the new partition with the symbols0́ and1́:

0́ = 0 ∪ 001110111 (32)

1́ = 1 \ 001110111. (33)

The 0́1́-partition is quite similar to the original 01-partition. If we translate a typical 01-
sequence, most symbols 1 will be translated into the symbol1́ and most symbolś0 will be
generated by translating the symbol 0. In contrast to the forbidden sequence 000110111, its
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Figure 3. More generating partitions for the Hénon-attractor at standard parameter values. An orbit
(stars) is shown at timest = −2 to 6, which generates the symbolic sequence. . .001110111. . . .
At times t = 5 andt = 6 it passes near the unstable fixpoint (FP, marked by large dot). At time
t = 0 it lies in a small region (smaller than the circle) that can be added to the 0-region, while still
keeping the partition generating. By choosing smaller and smaller regions, an infinite number of
binary partitions can be constructed, which are as good approximations to a generating partition as
the standard 01-partition (see text for proof).

counterpart́00́0́1́1́0́1́1́1́ may be allowed; and a likely way in which it can be generated is by
translating the difference-sequence 001110111. If we can show that both sequence describe
the same set of attractor points, then we can reverse the translation rules (32) and (33) and
prove that thé01́-partition is generating, too. The difference-sequence 001110111 was chosen
to allow such a proof.

To show that́00́0́1́1́0́1́1́1́ = 001110111, one uses the definition (32) to derive conditions
under which0́-symbols are translated into 0-symbols. One such condition is0́EE1́= 0EE1́
(asEEE1́ ∩ 001110111= 0), and it alone suffices to translate all the symbols0́ in our
sequence, except the underlined one:

0́0́0́1́1́0́1́1́1́= 000́1́1́01́1́1́. (34)

In the same way, one can find conditions under which the symbol1́ translates into 1. The
conditions1́1́= 1́1, 1E1́= 1E1, and1́E0= 1E0 suffice to show that:

000́1́1́01́1́1́= 000́110111. (35)

And, because 000110111 is forbidden, this last expression is equal to 001110111. Putting
everything together, we get

0́0́0́1́1́0́1́1́1́= 001110111 (36)
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0 = 0́ \ 0́0́0́1́1́0́1́1́1́ (37)

1 = 1́ ∪ 0́0́0́1́1́0́1́1́1́. (38)

These back-translation rules prove that the0́1́-partition is as good an approximation to a
generating partition as the 01-partition.

Similar partitions can be constructed starting from other forbidden sequences and the
corresponding difference-sequences. The resulting partition will not always be generating,
especially if the difference-sequence is short. If we had started, for example, from the
forbidden sequence 0110, the difference sequence 1110, and the new partitioñ0 = 0∪ 1110
and1̃ = 1 \ 1110, we would not have been able to show that 1110= 0̃1̃1̃0̃. This is because
the 01-partition and thẽ01̃-partition are too different and the symbol0̃ at the right end of̃01̃1̃0̃
may correspond not to a 0, but to a 1, like in 0111110⊆ 0̃1̃1̃0̃.

If one starts, however, with sufficiently long difference-sequences, such problems are less
common, and back-translation rules can often be derived. (This is because the number of
symbols0́ or 0̃ that have to be translated into 0 during the derivation of the back-translation
rule grows only linearly with the length of the difference-sequence, while the chance that any
of them does not correspond to 0 decays exponentially with the number of conditions we can
derive to translate it into 0, that is exponentially with the length of the difference-sequence.) In
particular, one can easily show, by repeating the above calculation, that adding more symbols 1
to the right of the difference-sequence 001110111 causes no problem with the back-translation
and that any partition with the symbolic regions

0 ∪ 001110111. . .1 and (39)

1 \ 001110111. . .1 (40)

is generating if the 01-partition is. Figure 3 shows that all these difference-sequences
001110111. . .1 are allowed, no matter how long they are (as the orbit shown passes the
vicinity of the unstable fixpoint, where arbitrarily long sequences 111. . .1 can be generated).
Thus we can construct an infinite number of different generating partitions. which are, however,
all quite similar to the original 01-partition.

Although this construction scheme is general enough to be applicable to other partitions
and dynamical systems, it does not produce all generating partitions. To construct all of
them, including the three other partitions in figure 2, one would have to find a more powerful
construction scheme.

7. Discussion

7.1. Symmetries in the translation rules

Is there any systematic way to construct all generating partitions? We do not know, but there
are some curious symmetries between the translation rules (9)–(14) and the back-translation
rules (24)–(31), which give a hint that such a system might exist.

For example, the translation rules (9) and (10) are turned into the back-translation rules
(24) and (25) by interchanging 0 andB, 1 andA, and future and past (that is left and right)
in all symbolic sequences. As shown above, the translation rules (24) and (25) depend on the
sequence 0010 being forbidden. Under the symmetry, this sequence turns intoBABB, which
is also forbidden. But the symmetry does not generalize to other grammatical rules, which are
irrelevant for the translation rules. For example, the counterparts of the forbidden sequences
0110, 0000 andAABA are the allowed sequencesBAAB, BBBB and 1011.

Similarly, the rules (11) and (12) are turned into the rules (28) and (29) by interchanging
0 andD, 1 andC, and future and past in all symbolic sequences. The forbidden sequences
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0010 and 0110 are thereby turned into the sequencesDCDD andDCCD, which are also
forbidden. And finally, one can turn the rules (13) and (14) into the rules (30) and (31) by
interchanging 0 andG, 1 andH , and future and past in all sequences. The forbidden sequence
0000 is thereby turned into the sequenceGGGG, which is also forbidden.

All these symmetries are not at all obvious from the geometric relationships in figure 2.
Whether they indicate a hidden systems, or whether they are mere coincidences, remains
unknown. In some other translation rules, like those betweenAB-sequences andCD-
sequences, an analogous symmetry could not be found. The similarity between the translation
rules (32) and (33) and the back-translation rules (37) and (38) is simply due to the way we
constructed thé01́-partition; it is not an exact symmetry.

7.2. Existence of symbol planes

Given this large variety of binary partitions, how can we decide which one is the most simple?
One way is to check which partition defines the most simple symbol plane. Symbol planes
were introduced in [3]. They are constructed from the original, two-dimensional phase space
by applying a discontinuous coordinate transformation, which fulfils these conditions: All
point sets described by semi-infinite future sequencesS0S1S2 . . . are transformed into vertical
lines in the symbol plane. All point sets described by semi-infinite past sequences. . . S−2S−1E

are transformed into horizontal lines. And while distances may change, the order of attractor
points along these lines is maintained. Due to these conditions, the temporal dynamics in
the symbol plane is simply described by a piecewise linear map. It stretches all horizontal
lines, cuts them at the partition line, and folds them back on top of each other. In this way,
the intuitive notion that the map stretches and folds its attractor can be made mathematically
precise.

The symbol plane for the 01-partition of the Hénon attractor was constructed in [3]. Can
analogous symbol planes be constructed with the other partitions, that is can their sequences
be ordered vertically and horizontally in a consistent way? They can for theCD-partition.
Figures 4(a) and (b) show schematically, howCD-sequences can be ordered horizontally and
vertically. The action of the H́enon-map on theCD-symbol plane is just as simple as its action
on the 01-symbol plane (results not shown), although the resulting picture of how the attractor
is stretched and folded is quite different.

But no symbol plane can be constructed for theAB-partition or theGH -partition. The
problem with orderingAB-sequences is illustrated in figures 4(c) and (d). Point sets of the
form AAB . . . , BBA . . . , . . . BAAE, and. . . BBBE (where ‘. . .’ stands for some allowed
semi-infiniteAB-sequences) intersect in four corners and thereby form a quadrangle with
curved sides. Note that one of its corners is directed inward. In the case of the 01- orCD-
partition, all such quadrangles have corners that are directed outwards. They can therefore
be transformed into rectangles with vertical and horizontal sides in the symbol plane. But
as figure 4(d) shows, quadrangles with an inwardly directed corner cannot be transformed
into rectangles in the symbol plane without violating the order of attractor points along the
sides of the quadrangle. Thus no symbol plane can be constructed for theAB-partition, at
least none where symbolic sequences with the same future partS0S1S2 . . . lie on vertical lines
and sequences with the same past part. . . S−2S−1E lie on horizontal lines. The best one
could probably achieve is to construct symbol planes for the points inA andB separately,
so that. . . S−2S−1E consists of two horizontal lines, one in each symbol plane. This would
describe yet another, much more complicated way of how the Hénon-map stretches and folds
its attractor.

Constructing a symbol plane for theGH -partition or any of the partitions in section 6
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Figure 4. CD-sequences can be ordered in a symbol plane, butAB-sequences cannot. (a) shows as
an example the point sets. . . CDE, . . . DCCE, . . . CCCE, and. . . DCE (with ‘ . . .’ standing for
some semi-infiniteCD-sequences), which are segments of the unstable manifold. If one constructs a
symbol plane, these segments have to be transformed into horizontal lines. Also shown are segments
of the stable manifold, on which the point setsCCC . . . , CCD . . . , CDD . . . , CDC . . . ,DDD . . .
andDCD . . . lie. They have to be transformed into vertical lines in a symbol plane. (b) shows
schematically, how such a vertical and horizontal ordering can be achieved. (c) shows similar
point sets for theAB-partition: . . . BBBE and. . . BAAE have to be mapped onto horizontal lines
andAAB . . . and the three segments starting withBBA . . . have to be mapped onto vertical lines
in the symbol plane (The last three segments differ in the ‘. . .’ part of their sequence: they are
BBABAAA . . . , BBABAAB . . . , andBBABABA . . .). If one tries to order all those segments
vertically and horizontally, one always ends up with an inconsistency, like the one in (d), where
the three segments of the formBBA . . . cannot be vertical lines, because they cross each other.

leads to similar inconsistencies (results not shown). Thus, even partitions that are equally
good approximations to generating partitions can be further distinguished on the ground of
whether their symbol sequences can be ordered in a symbol plane or not.

7.3. Location of partition lines

Jaeger and Kantz [12] conjectured that any (binary) generating partition should pass through
each orbit of homoclinic tangencies only once. This conjecture was based on the observation
that the 01-,CD-, andGH -partition, which were assumed to be generating, intersect orbits
through the segmentsA0,B0,C0, andD0 only once. But theAB-partition, which we presented
in figure 2, intersects orbits through the segmentB0 twice, namely atB−1 andB−2. And we
could prove that theAB-partition is generating, if the 01-partition is generating. TheAB-
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partition (and also the partitions in section 6) therefore provide counterexamples to the above
conjecture.

But perhaps the same condition can be used as a criterion of simplicity. Indeed, the
only two known partitions that meet this condition, as well as the other geometric condition
discussed in [12], are the 01-partition and theCD-partition, that is the same partitions for
which the most simple symbol planes can be constructed.

It will, however, be hard to generalize these geometric criteria of simplicity to higher-
dimensional systems. As the construction of symbol planes depends on the order of points
along the one-dimensional stable and unstable manifolds, it will be difficult to construct symbol
spaces for higher-dimensional manifolds, where there is no such order. Likewise, although
cutting the attractor at homoclinic tangencies may be enough to construct generating partitions
in two-dimensional systems, it may not be enough in higher-dimensional systems, where stable
and unstable manifolds can fold in many more ways. How to construct generating partitions
in these higher-dimensional systems, and how to decide which of them is the simplest, remain
open questions.

8. Conclusion

Although we cannot prove that any of the partitions in figure 2 or any of those in section 6
are indeed generating, it was easy to prove that they are equally good approximations to a
generating partition: if two orbits get assigned different symbolic sequences by one partition,
then they get assigned different symbolic sequences by all of these partitions. This holds not
only for standard parameters of the Hénon map, but for all parameter values where some short
01-sequences are forbidden.

Neither the known geometric [12] nor algebraic [5] methods provide a systematic way to
construct all generating partitions for a given attractor. But the simplicity of the construction
scheme in section 6, which produced an infinite number of generating partitions for the Hénon
attractor, suggests that a large variety of generating partitions exists, and that constructing all
of them will be very difficult. The same will probably hold for other dynamical systems with
forbidden symbolic sequences, including one-dimensional maps.

Which of these partitions is the most simple? According to different criteria, theCD-
partition and the 01-partition are the most simple among the known partitions of the Hénon
attractor. But there seems to be no commonly accepted criterion by which one of them can be
shown to be more simple than the other one. The 01-partition agrees well with the intuitive
idea of folding and stretching, that underlies the construction of the Hénon attractor [10]. The
CD-partition provides a different, but equally simple picture of how the Hénon attractor is
stretched and folded. To conclude, even in the case of the rather simple Hénon attractor, an
infinite variety of generating partitions exist, and it is not clear which one is the most simple.
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[6] Giovannini F and Politi A 1991 Homoclinic tangencies, generating partitions, and curvature of invariant
manifoldsJ. Phys. A: Math. Gen.241837–87

[7] Grassberger P and Kantz, H 1985 Generating partitions for the dissipative Henon mapPhys. Lett.A 113235–8
[8] Grassberger P, Kantz H and Mönig U 1989 On the symbolic dynamics of the Henon mapJ. Phys. A: Math. Gen.

225217–30
[9] Hao B-L 1991 Symbolic dynamics and characterization of complexityPhysicaD 51161–76
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